Group Theory Lecture Notes (2024/2025)

Griffin Reimerink

Contents

1	Groups				
	1.1	Homomorphisms	2		
2	Permutation groups				
		Cycles			
3	Symmetry groups				
	3.1	Dihedral groups	5		
	3.2	Automorphisms of graphs	6		
4	Actions and Sylow theory				
	4.1	Conjugation	6		
		Group actions			
	4.3	Sylow theory	7		
5	Nori	mal subgroups and factor groups	8		
	5.1	Normal subgroups	8		
	5.2	Factor groups			
	5.3	Simple groups	9		
	5.4	Homomorphisms from factor groups			
	5.5	Isomorphism theorems	9		
6					
	6.1	The structure of finitely generated abelian groups	LO		

1 Groups

Definition Group

A **group** is a triple (G,*,e) where G is a set, $e \in G$ and * (the **group law**) is a binary map $G \times G \to G$, such that the following three properties hold:

- 1. **Associativity**: For all $x, y, z \in G$ we have (x * y) * z = x * (y * z)
- 2. **Unit element**: For all $x \in G$, we have e * x = x = x * e
- 3. Inverses: For all $x \in G$ a $y \in G$ exists such that x * y = e = y * x. (notation: x^{-1})

The order of a group (#G) is its number of elements. We call a group finite if it has finite order.

Definition Abelian group

A group is **abelian** or **commutative** if $g_1 * g_2 = g_2 * g_1 \ \forall g_1, g_2 \in G$

Definition Subgroup

A group H is a **subgroup** of G if $H \subseteq G$ and they have the same operator and unit element.

Proposition Subgroup criterion

Let (G, *, e) be a group and $H \subseteq G$. Then H forms a subgroup of G if and only if

- 1. $e \in G$
- 2. For all $x, y \in H$ also $x * y \in H$
- 3. For all $x \in H$, also $x^{-1} \in H$

Proposition

The unit element is unique. Inverses are unique.

Proposition

Let G be a group with $g \in G$. Then the maps $x \in G \mapsto g * x$ and $x \in G \mapsto x * g$ are bijective.

Proposition Lagrange's theorem

If H is a subgroup of a finite group G, then the order of H is a divisor of the order of G.

Definition Order

Let x be an element of a group G. We define its **order** (notation: $\operatorname{ord}(x)$) as follows: If an integer m > 0 exists with $x^m = e$, then $\operatorname{ord}(x)$ is defined to be the smallest such m.

Otherwise, we set $\operatorname{ord}(x) := \infty$.

Proposition

Let G be a group and $x \in G$. Then the following statements hold true:

- 1. $\operatorname{ord}(x) = \operatorname{ord}(x^{-1})$.
- 2. If $\operatorname{ord}(x) < \infty$, then $\langle x \rangle = \{x, x^2, \dots, x^{\operatorname{ord}(x)} = e\}$.
- 3. $\operatorname{ord}(x) = \#\langle x \rangle$, i.e. the order of the subgroup generated by x is the order of x.
- 4. If $\#G < \infty$, then also $\operatorname{ord}(x) < \infty$ and moreover $\operatorname{ord}(x) \mid \#G$.
- 5. If $x^n = e$, then $ord(x) \mid n$

1.1 Homomorphisms

Definition Homomorphism

A **homomorphism** is a map $f:G_1 \to G_2$ such that:

$$f(g_1 * h_1) = f(g_1) * f(h_1) \ \forall g_1, h_1 \in G_1$$

Definition Isomorphism

An **isomorphism** is a bijective homomorphism.

If an isomorphism between G_1 and G_2 exists, they are **isomorphic**. (notation: $G_1 \cong G_2$)

Proposition Chinese remainder theorem

Let N, M be positive integers with gcd(N, M) = 1. The assignment

$$a \mod NM \mapsto (a \mod N, a \mod M) : \mathbb{Z}/NM\mathbb{Z} \to \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/M\mathbb{Z}$$

is an isomorphism.

Moreover it maps $(\mathbb{Z}/NM\mathbb{Z})^{\times}$ to $(\mathbb{Z}/N\mathbb{Z})^{\times} \times (\mathbb{Z}/M\mathbb{Z})^{\times}$, and this is also an isomorphism.

Proposition Properties of homomorphisms

Let $f:G_1\to G_2$ be a homomorphism and e_1,e_2 the respective units of G_1,G_2 . Then,

$$f(g)^{-1} = f(g^{-1})$$
 $f(e_1) = e_2$

The inverse of an isomorphism is an isomorphism.

The composition of homomorphisms is a homomorphism.

Proposition

Let $f:G_1\to G_2$ be a homomorphism and H_1,H_2 subgroups of G_1,G_2 respectively. Then $f(H_1)$ is a subgroup of G_2 and $f^{-1}(H_2)$ is a subgroup of G_1 .

Definition Kernel

Let $f: G_1 \to G_2$ be a homomorphism. Then $f^{-1}(\{e_2\})$ is the **kernel** of f.

Proposition

Let $f:G_1\to G_2$ be a group homomorphism.

$$f$$
 is injective $\iff \ker(f) = \{e_1\}$

2 Permutation groups

Definition Symmetric group

For a non-empty set Σ one denotes by S_{Σ} the set of all bijections from Σ to itself.

The **symmetric group** on the set Σ is defined as the group $(S_{\Sigma}, \circ, \mathrm{id}_{\Sigma})$.

Proposition

Let $f: \Sigma \to \Sigma'$ be a bijection with inverse $g: \Sigma' \to \Sigma$.

Then S_{Σ} and $S_{\Sigma'}$ are isomorphic, with isomorphism $\varphi: S_{\Sigma} \to S_{\Sigma'}$ given by $\varphi(\sigma) = f \circ \sigma \circ g$

The inverse of φ is $\psi: S_{\Sigma'} \to S_{\Sigma}$ given by $\psi(\tau) = g \circ \tau \circ f$.

Proposition Cayley's theorem

Every group G is isomorphic to a subgroup of S_G .

Definition Permutation group

The symmetric group on n integers, denoted by S_n , is defined as the group $S_{\{1,2,\ldots,n\}}$. Elements of this group are called **permutations**. The group S_n is also called the **permutation group** on n elements.

Proposition

Every finite group G is isomorphic to a subgroup of $S_{\{1,\ldots,n\}}$.

Proposition

The group S_n consists of n! elements.

2.1 Cycles

Definition Cycle

A permutation $\sigma \in S_n$ is called a **cycle** of length k (or a k-cycle), if there exist k distinct integers $a_1, \ldots, a_k \in \{1, \ldots, n\}$ such that:

$$\sigma(a_i) = a_{i+1}$$
 for $1 \le i < k$ $\sigma(a_k) = a_1$ $\sigma(x) = x$ for $x \notin \{a_1, \dots, a_k\}$

Such a permutation is denoted by $\sigma=(a_1\,a_2\,\ldots\,a_k)$. A 2-cycle is also called a **transposition**.

Proposition

Any permutation $\sigma \in S_n$ can be written uniquely as a product of pairwise disjoint cycles.

Proposition

If $(a_1 \dots a_k)$ and $(b_1 \dots b_\ell)$ are disjoint cycles, then $(a_1 \dots a_k)(b_1 \dots b_\ell) = (b_1 \dots b_\ell)(a_1 \dots a_k)$

Proposition

Let $\sigma := (i_1 i_2 \dots i_k)$ be a k-cycle. Then,

$$\sigma^{-1} = (i_k i_{k-1} \dots i_1) \qquad \operatorname{ord}(\sigma) = k$$

Proposition

If $\sigma_1, \ldots, \sigma_r$ are pairwise disjoint cycles with lengths ℓ_i , with $\sigma_1, \ldots, \sigma_r$ denoting their product, then:

- $(\sigma_1 \dots \sigma_r)^n = \sigma_1^n \dots \sigma_r^n$ for all $n \in \mathbb{Z}$
- $\operatorname{ord}(\sigma_1 \dots \sigma_r) = \operatorname{lcm}(\ell_1, \dots, \ell_r)$

Proposition

Every permutation $\sigma \in S_n$ can be written as a product of transpositions.

2.2 Alternating groups

Definition Sign function

We define the **sign** of a permutation $\sigma \in S_n$ by

$$\varepsilon(\sigma) := \prod_{1 \leq i < j \leq n} \frac{\sigma(j) - \sigma(i)}{j - i} = \pm 1 \quad \text{if } n \geq 2 \qquad \quad \varepsilon(\sigma) := 1 \quad \text{if } n = 1$$

This map is a homomorphism. We call σ even if $\varepsilon(\sigma) = 1$ and odd if $\varepsilon(\sigma) = -1$.

Proposition

For any $\rho \in S_n$ and any ℓ -cycle $(a_1 a_2 \dots a_\ell) \in S_n$,

$$\rho(a_1 \, a_2 \, \dots \, a_\ell) \rho^{-1} = (\rho(a_1) \, \rho(a_2) \, \dots \, \rho(a_\ell))$$

Proposition

Every transposition is odd.

Definition Alternating group

For $n \geq 1$ the alternating group A_n is the subgroup of S_n consisting of all even permutations.

Proposition

- 1. An ℓ -cycle has sign $\varepsilon(\sigma) = (-1)^{\ell-1}$
- 2. If σ is a product of cycles of lengths ℓ_1,\ldots,ℓ_r , then $\varepsilon(\sigma)=(-1)^n$ where $n=\sum_{i=1}^r(\ell_i-1)$
- 3. A permutation σ is even if and only if σ can be written as a product of an even number of 2-cycles.

Proposition

For $n \geq 2$ the group A_n consists of $\frac{n!}{2}$ elements.

Proposition

For $n \geq 3$ the elements of A_n can be written as products of 3-cycles.

3 Symmetry groups

Definition Groups of matrices

The **general linear group** $GL_n(F)$ is the group of invertible $n \times n$ matrices in the field $F = \mathbb{R}$ or $F = \mathbb{C}$. Its group law is matrix multiplication and the unit element is the identity matrix.

Let $n \in \mathbb{Z}, n > 0$. We define:

- The orthogonal group $O(n) := \{A \in GL_n(\mathbb{R}) \mid A^*A = I\}$
- The unitary group $U(n) := \{A \in GL_n(\mathbb{C}) \mid A^*A = I\}$
- The special orthogonal group $SO(n) := \{A \in GL_n(\mathbb{R}) \mid A^*A = I \text{ and } \det(A) = 1\}$
- The special unitary group $SU(n) := \{A \in GL_n(\mathbb{C}) \mid A^*A = I \text{ and } \det(A) = 1\}$

Definition Isometry

An **isometry** on \mathbb{R}^n is a map $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ with the following property:

$$||v - w|| = ||\varphi(v) - \varphi(w)||$$

The group of all isometries on \mathbb{R}^n is denoted $\mathrm{Isom}(\mathbb{R}^n)$.

Proposition

- 1. An isometry on \mathbb{R}^n mapping $0 \in \mathbb{R}^n$ to 0 is linear.
- 2. The linear isometries on \mathbb{R}^n are exactly the elements of O(n).
- 3. Every isometry can be written as a composition of a translation and a linear isometry.
- 4. Isometries are invertible.

Definition Symmetry group

The symmetry group of a subset $F \subset \mathbb{R}^n$ is defined as:

$$Sym(F) := \{ \varphi \in Isom(\mathbb{R}^n) \mid \varphi(F) = F \}$$

Proposition

Let $F \subset \mathbb{R}^n$, $a \in \mathbb{R}_{>0}$ and φ an isometry on \mathbb{R}^n . Then $\mathrm{Sym}(F)$ and $\mathrm{Sym}(a\varphi(F))$ are isomorphic.

3.1 Dihedral groups

Definition Dihedral group

The symmetry group of a regular n-gon F_n is called the n-th **dihedral group** D_n .

The symmetry group of the circle C_r is called the **infinite dihedral group** D_{∞} .

Proposition Properties of D_{∞}

The group D_{∞} is isomorphic to O(2), and consists of reflections σ across arbitrary lines through the center of the circle, and of all rotations ρ around the center of the circle.

The subset $R \subset D_{\infty}$ of all rotations is a commutative subgroup of D_{∞} .

For any reflection $\sigma \in D_{\infty}$, we have $D_{\infty} = R \cup R \cdot \sigma$.

Proposition Properties of D_n

The group D_n consists of 2n elements. It is abelian if and only if n=2.

The group D_n contains the rotation ρ by an angle $\frac{2\pi}{n}$ and the reflection σ in the x-axis. Every element of D_n can be written in a unique way as ρk or $\sigma \rho k$, for some $0 \le k < n$.

We have $\rho^n = \sigma^2 = id$. The subgroup R_n of D_n consisting of all rotations is isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

3.2 Automorphisms of graphs

Definition Automorphism of a graph

An **automorphism** of a graph $\Gamma = (V, E)$ is a permutation σ on its set of vertices V, with the property that for all $\{a,b\} \in E$ also $\{\sigma(a),\sigma(b)\} \in E$.

The set consisting of all automorphisms of Γ is denoted $Aut(\Gamma)$

Proposition

For a graph Γ with n vertices, $\operatorname{Aut}(\Gamma)$ is a subgroup of S_n .

Actions and Sylow theory

Definition Coset, index

A **left coset** of H in G is any subset of the form $gH,g\in G$.

A **right coset** of H in G is any subset of the form $Hg,g\in G$.

The set of all left cosets $\{gH:g\in G\}$ is denoted G/H. The set $\mathbb{Z}/n\mathbb{Z}$ is an example of this notation.

The **index** [G:H] of H in G is defined as the number of disjoint left cosets (#G/H) of H in G.

4.1 Conjugation

Definition Conjugation

If G is a group and $a \in G$, then the map $\gamma_a : G \to G, x \mapsto axa^{-1}$ is called the **conjugation** by a. "x and y are **conjugate**" (notation: $x \sim y$) means $y = axa^{-1}$ for some $a \in G$.

The **conjugacy class** of x is $C_x = \{y \in G \mid \text{ there exists } a \in G \text{ with } \gamma_a(x) = y\}$.

Proposition Properties of conjugation

Let G be a group and $a, b \in G$.

- 1. Conjugation is an isomorphism.
- 2. $\gamma_a \gamma_b = \gamma_{ab}$
- 3. The inverse of γ_a is $\gamma_{a^{-1}}$.
- 4. If H is a subgroup of G, then $\gamma_a(A) = aHa^{-1}$ and $H \cong aHa^{-1}$
- 5. $a \sim b$ is an equivalence relation.
- 6. G is the disjoint union of conjugacy classes.

4.2 Group actions

Definition Group action

A group action of a group G on a nonempty set X is a map $G \times X \to X$, denoted $(g, x) \mapsto gx$, satisfying:

- 1. ex = x for every $x \in X$
- 2. (gh)x = g(hx) for all $g, h \in G$ and all $x \in X$

Alternative terminology: "X is a G-set", "G acts on X"

Proposition

Let G be a group and X a set.

- ullet Given an action of G on X, the map $f:G\to S_X$ given by f(g)(x)=gx is a homomorphism.
- If $f:G \to S_X$ is a homomorphism, then $gx := f(g)(x), g \in G, x \in X$ defines an action of G on X

Definition Stabilizer and orbit

Let the group G act on the set X and take $x \in X$.

• The **stabilizer** of x in G, denoted by G_x or by $Stab_G(x)$, is:

$$G_x := \{g \in G : gx = x\} \subseteq G$$

• The **orbit** of x under G, denoted by Gx, is:

$$Gx := \{gx : g \in G\} \subseteq X$$

Definition Faithful and transitive actions

The action of G on X is called **faithful** if for all $g,h\in G$ with $g\neq h$ there exists $y\in X$ with $gy\neq hy$. The action of G on X is called **transitive** if for all $x_1,x_2\in X$ there exists $g\in G$ with $gx_1=x_2$

Definition Fixpoints

The element $x \in X$ is called a **fixpoint** or **invariant** of G if gx = x for every $g \in G$.

The **set of fixpoints** of G is denoted as:

$$X^G = \{ y \in X : gy = y \text{ for all } g \in G \}$$

The action of G on X is called **fixpoint free** if there are no fixpoints.

Proposition Properties of group actions

Let G be a group and let X be a G-set. Let f be the map $G \to S_x$ given by f(g)(x) = gx.

- 1. For any $x \in X$, the stabilizer G_x is a subgroup of G.
- 2. The action of G on X is faithful \iff The map f is injective
- 3. G acts transitively on $X \iff Gx = X$ for some $x \in X \iff Gx = X$ for all $x \in X$
- 4. Let $x,y\in X$. Then $Gx=Gy\iff y\in Gx$, and $Gx\cap Gy=\varnothing\iff y\notin Gx$.
- 5. Let $x \in X$ and $g \in G$. Then $G_{gx} = gG_xg^{-1}$ (conjugation by g is an isomorphism $G_x \cong G_{gx}$)
- 6. X is a disjoint union of orbits.

Proposition

Suppose G is a group and X is a G-set. Let $x \in X$.

Then $G/G_x \to Gx: gG_x \mapsto gx$ is a well-defined bijective map.

Proposition

For any G-set X and any $x \in X$ one has $\#Gx = [G:G_x]$

Definition Permutation character

Given a group G and a finite G-set X, the **permutation character** of the action is:

$$\chi:G \to \mathbb{Z}$$
 $\chi(g):=\#\{x\in X:gx=x\}=\# \text{fixpoints of } g$

Proposition Orbit-counting formula

Let G be a finite group acting on a finite G-set X. The number of orbits in X under G is given by:

$$\# \text{orbits} = \frac{1}{\# G} \sum_{g \in G} \chi(g)$$

4.3 Sylow theory

Definition Sylow p-group

Let G be a finite group and let p be a prime dividing the order of G.

Write $\#G = p^n \cdot m$ with $n \ge 1$, $\gcd(p, m) = 1$. A **Sylow p-group** in G is a subgroup of G with order p^n .

We define $n_p(G)$ to be the number of distinct Sylow p-groups in G.

Proposition Properties of Sylow p-groups

Let G be a finite group and let p be a prime dividing #G. Consider m, n by definition of Sylow groups.

- The group G contains a Sylow p-group.
- $n_p(G) \equiv 1 \mod p$
- If H_1 , H_2 are both Sylow p-groups in G, then they are conjugate. $(H_1 = \gamma_a(H_2))$ for some $a \in G$
- $n_p(G) \mid m$

Proposition

For p prime and n,m>0 with $\gcd(p,m)=1$ we have $\binom{p^nm}{p^n}\equiv 1\mod p$

Proposition

Suppose $p \neq q$ are primes with $p \neq 1 \mod q$ and $q \neq 1 \mod p$, and G is a group with #G = pq. Then $G \cong \mathbb{Z}/pq\mathbb{Z}$, i.e. there is only 1 group with order pq up to isomorphism, which is the cyclic group.

Proposition Cauchy's theorem

If G is a finite group and if p is a prime dividing the order of G, then there exists $g \in G$ with $\operatorname{ord}(g) = p$.

5 Normal subgroups and factor groups

5.1 Normal subgroups

Definition Normal subgroup

A subgroup H of a group G is called a **normal subgroup** if $H = aHa^{-1}$ for all $a \in G$.

Proposition

If H is a subgroup of a group G and $a, b \in G$, then

$$aH = bH \iff b^{-1}a \in H$$

Proposition

Let G be a group and let $H \subseteq G$ be a subgroup. The following statements are equivalent:

- 1. H is normal in G
- 2. aH = Ha for all $a \in G$
- 3. $aHa^{-1} \subseteq H$ for all $a \in G$
- 4. For all $a, b, c, d \in G$ with aH = cH and bH = dH we also have abH = cdH

Proposition

If G is a group and if H is a subgroup of G with [G:H]=2, then $H\subseteq G$ is normal.

5.2 Factor groups

Definition Factor group

Given a group G and a normal subgroup $H \subseteq G$, the **factor group** G modulo H is:

$$G/H := \{aH \mid a \in G\}$$
 Unit element: $eH = H$ Group law: $(aH) \cdot (bH) := abH$

Proposition

Let H be a normal subgroup of a group G.

$$G/H$$
 abelian $\iff a^{-1}b^{-1}ab \in H$ for all $a, b \in G$

Proposition

Let H be normal in a group G.

The assignment $\pi: G \to G/H: g \mapsto gH$ defines a surjective homomorphism from G to G/H with $\ker(\pi) = H$. This is called the **canonical homomorphism** to a factor group.

Proposition

A subgroup H of a group G is normal if and only if H is the kernel of some homomorphism from G to another group.

5.3 Simple groups

Definition Simple group

A group G is called **simple** if $\{e\}$ and G are the only normal subgroups in G.

Proposition

 A_n is a simple group for every $n \geq 5$.

5.4 Homomorphisms from factor groups

Proposition

Let G,G' be groups, let H be a normal subgroup of G, and $\varphi:G\setminus H\to G'$ a homomorphism.

Consider the canonical homomorphism $\pi: G \to G/H$ given by $\pi(g) = gH$.

Then the composition $\psi = \varphi \circ \pi$ is a homomorphism $G \to G'$, which satisfies $H \subset \ker(\psi)$.

Construction of a homomorphism from a factor group

Let H be a normal subgroup of a group G, and consider an arbitrary group G'.

We can construct a homomorphism $\varphi:G/H\to G'$ as follows:

- 1. Find a homomorphism $\psi: G \to G'$ satisfying $H \subset \ker(\psi)$
- 2. We have $\psi(g_1)=\psi(g_2)$ for all $g_1,g_2\in G$ such that $g_1H=g_2H$, i.e. the rule $\varphi(gH)=\psi(g)$ yields a well-defined map $G/H\to G$
- 3. $\varphi:G/H\to G'$ is a homomorphism, and $\psi=\varphi\circ\pi$ where π is the canonical homomorphism $G\to G/H$.

5.5 Isomorphism theorems

Proposition Homomorphism theorem

Let $\psi:G\to G'$ be a homomorphism of groups and $H:=\ker(\psi)$. Then:

- 1. H is a normal subgroup of G
- 2. $G/H \cong \psi(G)$
- 3. $\psi(G)$ is a subgroup of G'
- 4. If ψ is surjective, then $G/H \cong G'$

Proposition First isomorphism theorem

Consider a group G, a subgroup $H \subseteq G$, a normal subgroup $N \subseteq G$, and the group $HN = \{hn \mid h \in H, n \in N\}$.

- 1. HN is a subgroup of G.
- 2. N is a normal subgroup of HN.
- 3. $H \cap N$ is a normal subgroup of H
- 4. $H/(H \cap N) \cong HN/N$

Proposition Second isomorphism theorem

Consider a group G and a normal subgroup N.

- 1. Every normal subgroup in G/N has the form H/N, where H is a normal subgroup in G containing N.
- 2. If $N \subset H$ for some normal subgroup H in G, then $(G/N)/(H/N) \cong G/H$.

6 Finitely generated abelian groups

Definition Finitely generated group

A group G is **finitely generated** if it contains a finite set of **generators** g_1, g_2, \ldots, g_n such that every element of G can be written as a product of the generators and their inverses.

The group law of finitely generated abelian groups will be denoted by +.

Proposition

Any finitely generated abelian group (A, +, 0) is isomorphic to a factor group \mathbb{Z}^n/H for some subgroup $H \subseteq \mathbb{Z}^n$

Proposition

If $\mathbb{Z}^k \cong \mathbb{Z}^\ell$, then $k = \ell$.

Proposition

If H is a subgroup of \mathbb{Z}^n then a unique k exists with $H \cong \mathbb{Z}^k$ and $0 \le k \le n$.

Definition Free abelian group

An abelian group H is called a **free abelian group** if a **basis** $h_1, \ldots, h_k \in H$ exists such that every $h \in H$ can be written uniquely as $h = m_1 h_1 + \ldots + m_k h_k$.

6.1 The structure of finitely generated abelian groups

Proposition Structure theorem for finitely generated abelian groups

For any finitely generated abelian group A there exist a unique integer $r \geq 0$ and a unique (possibly empty) finite sequence (d_1, \ldots, d_m) of integers $d_i > 1$ satisfying $d_m \mid d_{m-1} \mid \ldots \mid d_1$ such that

$$A \cong \mathbb{Z}^r \times \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_m\mathbb{Z}$$

We call r the rank of A and we call d_1, \ldots, d_m the elementary divisors of A.

Proposition

Let H be a subgroup of \mathbb{Z}^n with $H \neq \{0\}$.

There exists a basis f_1, \ldots, f_n for \mathbb{Z}^n , and a sequence of integers (d_1, \ldots, d_k) of length $1 \le k \le n$ with $d_i > 0$ and $d_k \mid d_{k-1} \mid \ldots \mid d_1$, such that $d_1 f_1, \ldots, d_k f_k$ is a basis for H.

Definition Torsion subgroup

Let A be an abelian group. The subgroup $A_{\mathsf{tor}} = \{a \in A \mid \operatorname{ord}(a) < \infty\}$ is called the **torsion subgroup** of A.

Proposition

Suppose that H is a subgroup of \mathbb{Z}^n generated by g_1, \ldots, g_n and $g_i = a_{1i}e_1 + \ldots + a_{ni}e_n$ for some basis $\{e_1, \ldots, e_n\}$ for \mathbb{Z}^n . Let $A = (a_{ij})$ be the corresponding $n \times n$ matrix. Then:

H has finite index in $\mathbb{Z}^n \iff \det(A) \neq 0 \implies \#\mathbb{Z}^n/H = |\det(A)|$

Index

abelian, 2	kernel, 3
alternating group, 4	Lagrango's theorem 2
Associativity, 2	Lagrange's theorem, 2
automorphism, 6	left coset, 6
basis, 10	normal subgroup, 8
canonical homomorphism, 9	odd, 4
Cauchy's theorem, 8	orbit, 7
Cayley's theorem, 3	Orbit-counting formula, 7
Chinese remainder theorem, 3	order, 2
commutative, 2	orthogonal group, 5
conjugacy class, 6	
conjugate, 6	permutation character, 7
conjugation, 6	permutation group, 3
cycle, 4	permutations, 3
cycle, 4	Properties of D_{∞} , 5
Definition, 2–10	Properties of D_n , 6
dihedral group, 5	Properties of conjugation, 6
diffedial group, 5	Properties of group actions, 7
elementary divisors, 10	Properties of homomorphisms, 3
even, 4	Properties of Sylow p-groups, 8
even, i	Proposition, 2–10
factor group, 8	1 40
faithful, 7	rank, 10
finitely generated, 10	right coset, 6
First isomorphism theorem, 9	Casand isomorphism theorem 0
fixpoint, 7	Second isomorphism theorem, 9
fixpoint free, 7	set of fixpoints, 7
free abelian group, 10	sign, 4
nee abenan group, 10	simple, 9
general linear group, 5	special orthogonal group, 5
generators, 10	special unitary group, 5
group, 2	stabilizer, 7
group action, 6	Structure theorem for finitely generated abelian
group law, 2	groups, 10
group law, 2	subgroup, 2
homomorphism, 2	Subgroup criterion, 2
Homomorphism theorem, 9	Sylow p-group, 7
Homomorphism theorem, 9	symmetric group, 3
index, 6	symmetry group, 5
infinite dihedral group, 5	taurieu aukuuruu 10
invariant, 7	torsion subgroup, 10
Inverses, 2	transitive, 7
isometry, 5	transposition, 4
isomorphic, 2	Unit element, 2
isomorphism, 2	unitary group, 5